Reasoning and Problem Solving Step 8: Two-Step Equations

National Curriculum Objectives:

Mathematics Year 6: (6A1) Express missing number problems algebraically

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Use number cards with all 4 operations to create three balanced one and twostep equations. Includes whole numbers only.
Expected Use number cards with all 4 operations to create three balanced two-step equations. Includes whole numbers, with some decimals and fractions.
Greater Depth Use number cards with all 4 operations to create three balanced two-step equations. Includes whole numbers, decimals, fractions and negative numbers.

Questions 2, 5 and 8 (Problem Solving)
Developing Choose a value for y and find three possible ways to balance the two-step equation. Includes whole numbers only and all 4 operations. Some bar models provided for support.
Expected Choose a value for y and find three possible ways to balance the two-step equation. Includes whole numbers, with some decimals and fractions and all 4 operations. Some bar models provided for support.
Greater Depth Choose a value for y and find three possible ways to balance the two-step equations. Includes whole numbers, decimals, fractions and negative numbers and all four operations.

Questions 3, 6 and 9 (Reasoning)
Developing Explain which statement about a two-step equation is correct. Includes whole numbers and all 4 operations.
Expected Explain which statement about a two-step equation is correct. Includes whole numbers, with some decimals and fractions and all 4 operations.
Greater Depth Explain which statement about a two-step equation is correct. Includes whole numbers, decimals, fractions and negative numbers and all four operations.

More Year 6 Algebra resources.

Did you like this resource? Don't forget to review it on our website.

Two-Step Equations

1a. Use the cards below to create three balanced equations where $x=6$. You must use a different operation in each equation.

2a. Choose a value for y and find three possibilities to complete the following equation.
$2 y-\square=\square$

$2 y$	7	
y	y	$-?$

3a. Scott and Mia are solving the following algebraic equation.

$2 x+6=19+5$
x must be 6 for this equation to be balanced.

Scott
x must be 9 for this equation to be balanced.

Who is correct? Prove it.
Mia

1b. Use the cards below to create three balanced equations where $x=7$. You must use a different operation in each equation.
14
 $2 x$

21

$6 x$

2b. Choose a value for y and find three possibilities to complete the following equation.

3b. Ben and Freya are solving the following algebraic equation.

Two-Step Equations

Two-Step Equations

4a. Use the cards below to create three balanced equations where $x=2.5$. You must use a different operation in each equation.

5a. Choose a value for y and find three possibilities to complete the following equation.

6a. James and Lily are solving the following algebraic equation.

$$
0.5 x-9=5
$$

This equation is impossible because 9 is smaller than 0.5 .

James
x must be 28 for this equation to be balanced.

Who is correct? Prove it.

4b. Use the cards below to create three balanced equations where $x=0.75$. You must use a different operation in each equation.

 $2 x$ | 3 | 2.25 |
| :--- | :--- |

5b. Choose a value for y and find three possibilities to complete the following equation.

6b. Danny and Bella are solving the following algebraic equation.

$$
20 \div 8 x=10
$$

x must be $\frac{1}{4}$ for this equation to be balanced.

Bella
This equation is impossible because $20 \div 8=2.5$.

Who is correct? Prove it.

Two-Step Equations

7a. Use the cards below to create three balanced equations where $x=0.2$. You must use a different operation in each equation.
2.5 5x
1.0 .5

8a. Choose a value for y and find three possibilities for each of the following equations.

9a. Alex and Priya are solving the following algebraic equation.

7b. Use the cards below to create three balanced equations where $x=0.25$. You must use a different operation in each equation.

8b. Choose a value for y and find three possibilities for each of the following equations.
A.

\div

B. $\square y-\square=-0.75$

9b. Oscar and Kelly are solving the following algebraic equation.

$$
24 x-20.4=-2.4
$$

This equation is incorrect because
24 is larger than 20.4 so there will not be a negative answer.
Kelly
x must be 0.75 for this equation
to be balanced.

Who is correct? Prove it.

Oscar

Reasoning and Problem Solving Two-Step Equations

Reasoning and Problem Solving Two-Step Equations

Developing

1b. Various answers, for example:
$2 x+7=21 ; 5 x-14=21 ; 6 x \div 2=21$
2b. Various answers, for example: if $y=6$, then $4 y+3=27$; if $y=5$, then $4 y+7=27$; if $y=4$, then $4 y+11=27$.
3b. Ben is correct because you can take away 3 from both sides leaving $3 x=16+$ $5 ; 16+5=21.21 \div 3=7$.

Expected

4b. Various answers, for example:
$10 x-5.25=2.25 ; 9 x \div 3=2.25 ; 2 x+\frac{3}{4}=$ 2.25

5b. Various answers, for example: if $y=5$, then $3 y-3=12$; if $y=5.5$, then $3 y-4.5=$ 12; if $y=5.75$, then $3 y-5.25=12$.
6b. Bella is correct because $\frac{1}{4} \times 8=2$ and $20 \div 2=10$. Danny is incorrect because 8 is multiplied by x before dividing 20 by $8 x$.

Greater Depth

7b. Various answers, for example:
$25 x-8.75=-2.5 ;-2.5+12 x=; 12 x x$ $=1.5$
8b. Various answers, for example:
Calculation A: if $y=0.5,17.5 y \div 5=1.75$;
$14 y \div 4=1.75 ; 10.5 y \div 3=1.75$; Calculation B: $4 y-2.75=-0.75 ; 7 y-4.25=-0.75 ; 2 y-$ $1.75=-0.75$
9b. Oscar is correct because $24 \times 0.75=$ 18 and $18-20.4=-2.4$. Kelly is incorrect because the starting number can be made smaller when multiplying by a number less than 1 so there can be a negative answer.

