NRICH

Magic Matrix
 Age 7 to 11

Here is a "magic" matrix:

1	3	2	1
3	5	4	3
1	3	2	1
2	4	3	2

It doesn't look very magical does it?
This is how you find out the "magic" in the matrix:
Circle any number in the matrix, for example, 5 . Draw a line through all the squares that lie in the same row and column as your selected number:

1	3	2	1
3	5	4	3
1	3	2	1
2	4	3	2

Then circle another number that has not got a line through it, for example, the 1 in the top right hand corner, and again cross out all squares in the same row and column:

1	3	2	1
3	5	-4	3
1	3	2	1
2	4	3	2

Repeat for a third time, for example:

Then circle only the remaining number that has no line through it:

Add all the circled numbers together and note your answer.
Try again with a different starting number. What do you notice?
Try the same thing with these two slightly harder matrices:

$1 \cdot 9$	$3 \cdot 4$	$2 \cdot 7$	$4 \cdot 1$	$1 \frac{1}{6}$	$2 \frac{1}{4}$	$2 \frac{11}{12}$	$1 \frac{1}{12}$
$0 \cdot 5$	2	$1 \cdot 3$	$2 \cdot 7$	$1 \frac{1}{4}$	$2 \frac{1}{3}$	3	$1 \frac{1}{6}$
$0 \cdot 3$	$1 \cdot 8$	$1 \cdot 1$	$2 \cdot 5$	3	$4 \frac{1}{12}$	$4 \frac{3}{4}$	$2 \frac{11}{12}$
$2 \cdot 8$	$4 \cdot 3$	$3 \cdot 6$	5	$1 \frac{5}{6}$	$2 \frac{11}{12}$	$3 \frac{7}{12}$	$1 \frac{3}{4}$

This problem was made to celebrate NRICH's tenth birthday - perhaps you can see the connection!

Let's try a different one with larger numbers.

18	17	25	34
6	5	13	22
29	28	36	45
25	24	32	41

What is the magic total this time?
I will show you how this kind of matrix works. You can then invent one to try on your friends!

First you need to choose your 'magic total'. As you know, I chose 100 for the matrix above.
I have chosen: $1,16,9,23,18,4,2$ and 27 . [You can check that together they add to 100.]

Now make an addition table like this:

You can download a sheet of them here /content/id/5517/Magic\%20Matrix\%20Empty.pdf. Put your numbers in the cells on the outside and add them to make the matrix:

	2	1	9	18
16				
4				
27				
23				

	2	1	9	18
16	18	17	25	34
4	6	5	13	22
27	29	28	36	45
23	25	24	32	41

Finally, copy the square without the numbered outside cells:

18	17	25	34
6	5	13	22
29	28	36	45
25	24	32	41

Now you know how the matrix works, you are ready for the real problem.
Can you work out what numbers were used to make any of the original three matrices?

图 图 UNIVERSITY OF
 - CAMBRIDGE
 http://www.cam.ac.uk

Copyright © 1997-2020. University of Cambridge. All rights reserved.
http://nrich.maths.org/terms
NRICH is part of the family of activities in the Millennium Mathematics Project http://mmp.maths.org .

