NRICH

Copyright © University of Cambridge. All rights reserved.

## Magic Matrix

Here is a "magic" matrix:

| 1 | 3 | 2 | 1 |
|---|---|---|---|
| 3 | 5 | 4 | 3 |
| 1 | 3 | 2 | 1 |
| 2 | 4 | 3 | 2 |

It doesn't look very magical does it? This is how you find out the "magic" in the matrix:

Circle any number in the matrix, for example, 5. Draw a line through all the squares that lie in the same row and column as your selected number:

| 1 | 3 | 2 | 1 |
|---|---|---|---|
| 3 | 5 | 4 | 3 |
| 1 | 3 | 2 | 1 |
| 2 | 4 | 3 | 2 |

Then circle another number that has not got a line through it, for example, the 1 in the top right hand corner, and again cross out all squares in the same row and column:

| 1 | 3 | 2 | (1) |
|---|---|---|-----|
| 3 | 5 | 4 | 3   |
| 1 | 3 | 2 | 1   |
| 2 | 4 | 3 | 2   |

Repeat for a third time, for example:

| 1 | 3   | 2 | (1) |
|---|-----|---|-----|
| 3 | (5) | 4 | 3   |
| 1 | 3   | 2 | 1   |
| 2 | 4   | 3 | 2   |

Then circle only the remaining number that has no line through it:

Magic Matrix



Add all the circled numbers together and note your answer. Try again with a different starting number. What do you notice?

Try the same thing with these two slightly harder matrices:

| 1.9 | 3∙4 | 2.7 | 4.1 | 1 <u>1</u> 6                  | $2\frac{1}{4}$  | $2^{11}_{12}$   | $1\frac{1}{12}$               |
|-----|-----|-----|-----|-------------------------------|-----------------|-----------------|-------------------------------|
| 0.5 | 2   | 1.3 | 2.7 | 1 <sup>1</sup> / <sub>4</sub> | $2\frac{1}{3}$  | 3               | 1 <sup>1</sup> / <sub>6</sub> |
| 0.3 | 1.8 | 1.1 | 2.5 | 3                             | $4\frac{1}{12}$ | $4\frac{3}{4}$  | $2^{11}_{12}$                 |
| 2.8 | 4.3 | 3.6 | 5   | 1 <u>5</u>                    | $2^{11}_{12}$   | $3\frac{7}{12}$ | 1 <u>3</u>                    |

This problem was made to celebrate NRICH's tenth birthday - perhaps you can see the connection!

Let's try a different one with larger numbers.

| 18 | 17 | 25 | 34 |
|----|----|----|----|
| 6  | 5  | 13 | 22 |
| 29 | 28 | 36 | 45 |
| 25 | 24 | 32 | 41 |

What is the magic total this time?

I will show you how this kind of matrix works. You can then invent one to try on your friends!

First you need to choose your 'magic total'. As you know, I chose 100 for the matrix above.

I have chosen:  $1,16,9,23,18,4,2~~{\rm and}~27.$  [You can check that together they add to 100.]~~

Now make an addition table like this:



You can download a sheet of them <u>here /content/id/5517/Magic%20Matrix%20Empty.pdf</u>. Put your numbers in the cells on the outside and add them to make the matrix:

|    | 2 | 1 | 9 | 18 |    | 2  | 1  | 9  | 18 |
|----|---|---|---|----|----|----|----|----|----|
| 16 |   |   |   |    | 16 | 18 | 17 | 25 | 34 |
| 4  |   |   |   |    | 4  | 6  | 5  | 13 | 22 |
| 27 |   |   |   |    | 27 | 29 | 28 | 36 | 45 |
| 23 |   |   |   |    | 23 | 25 | 24 | 32 | 41 |

Finally, copy the square without the numbered outside cells:

| 18 | 17 | 25 | 34 |
|----|----|----|----|
| 6  | 5  | 13 | 22 |
| 29 | 28 | 36 | 45 |
| 25 | 24 | 32 | 41 |

Now you know how the matrix works, you are ready for the real problem.

Can you work out what numbers were used to make any of the original three matrices?

