Year 6 - Autumn Block 2 - Four Operations

Good morning, Year 6. It's Tuesday 19 ${ }^{\text {th }}$ May 2020. We will be doing some ambitious maths this morning - I highly recommend you watch the video clip to help you!

Part 1

WALT Calculate Square and Cube Numbers

See my notes in green - and

 the video clip on slide 3-tohelp you.

Remember...

Square numbers are the product of a number that is multiplied by itself (so 4 is a square number because it is the product of 2×2).

Cube numbers are the product of a number multiplied by itself and then multiplied by itself again. (so 16 is a cube number because it is the product of 2 X 2 X 2).

It's useful to know that the number that is multiplied by itself to make the square number is called the square root. So 2 is the square root of 4 because $2 \times 2=4$. This is the symbol for square root: $\sqrt{ }$

The number that a cube number is made from is called the cube root. So the cube root of 16 is 2 because $2 \times 2 \times 2=16$. This is the symbol for cube root: $\sqrt[3]{ }$

The video clip below (also posted yesterday) offers a great explanation for how to quickly calculate cube roots. Watch it and copy the table of products of cube roots from 1-10 to help you solve the cube number problems you'll be tackling today - then learn the trick. Bonus points if you can teach a family member the trick too!
https://www.youtube.com/watch?v=Ds8ijPsg26g

Circle the square numbers and underline the cube numbers.
36

$$
343
$$

150
25
729
1,728
90
144
65
1,000
27
16

Varied Fluency 1

Circle the square numbers and underline the cube numbers. $36=6 \times 6,25=5 \times 5,144=12 \times 12,16=4 \times 4.343=7 \times 7 \times 7,729=9 \times 9 \times 9$, $1728=12 \times 12 \times 12,1000=10 \times 10 \times 10,27=9 \times 9 \times 9$

36

343

150
25

729
1,728

65

1,000

90

Varied Fluency 2

Complete the calculations.

Varied Fluency 2

Complete the calculations.

Varied Fluency 3

Calculate then order from smallest to largest.

11^{2}
10^{3}
8^{3}
6^{3}
7^{2}

Varied Fluency 3

Calculate then order from smallest to largest.

11^{2}

10^{3}

8^{3}

6^{3}
72

$$
7^{2}=49,11^{2}=121,6^{3}=216,8^{3}=512,10^{3}=1,000
$$

Varied Fluency 4

Find the pattern.
What are the missing numbers in the sequence? HINT: Find the cube root of the numbers you have been given below. Look for the pattern to find the last 2 cube numbers.

1,331,
 729,
 343,

Varied Fluency 4

Find the pattern.

What are the missing numbers in the sequence?

Did you spot the pattern? The cube roots are odd numbers in descending order - starting with 11 (the cube root of 1331), 9 (the cube root of 729), 7 (the cube root of 343). So the $4^{\text {th }}$ number in the sequence has a cube root of 5 (so calculate $5 \times 5 \times 5$) and the final number in the sequence has a cube root of $3(3 \times 3 \times 3)$.

1,331,
 729, 343, 125

Well done! It's over to you now.

Go to Part 2 and choose your challenge! Normal rules apply: page 1 will give you an easier challenge, page 2 will be about the same as what we've just practised and page 3 will be more of a stretch.

You only need to do the first set of questions on your chosen challenge - the ' A ' questions. If you want extra practice, you can then do the ' B ' questions of your chosen challenge page. When you finish, don't forget to mark your answers before sharing, so I can see where you need help.

