Reasoning and Problem Solving Step 3: Use An Algebraic Rule

National Curriculum Objectives:

Mathematics Year 6: (6A2) Use simple formulae

Differentiation:

Questions 1, 4 and 7 (Reasoning)

Developing Explain whether a statement is correct. Using addition, subtraction and multiplication by 2.

Expected Explain whether a statement is correct. Using all 4 operations.

Greater Depth Explain whether a statement is correct. Using all 4 operations where some answers may be decimals or negative numbers.

Questions 2, 5 and 8 (Problem Solving)

Developing Use the cards to create three different algebraic expressions, where one function is given. Using addition, subtraction and multiplication by 2.

Expected Use the cards to create four different algebraic expressions. Using all 4 operations.

Greater Depth Use the cards to create four different algebraic expressions . Using all 4 operations where some numbers may be decimals or negative numbers.

Questions 3, 6 and 9 (Reasoning)

Developing Explain whether a statement is true or false. Using addition, subtraction and multiplication by 2.

Expected Explain whether a statement is true or false. Using all 4 operations.

Greater Depth Explain whether a statement is true or false. Using all 4 operations where some answers may be decimals or negative numbers.

More <u>Year 6 Algebra</u> resources.

Did you like this resource? Don't forget to <u>review</u> it on our website.

Reasoning and Problem Solving – Use An Algebraic Rule – Year 6 Developing

Reasoning and Problem Solving – Use An Algebraic Rule – Year 6 Expected

<u>Use An Algebraic Rule</u>	<u>Use An Algebraic Rule</u>
7a. Jess is using the rule (5a ÷ 2) – 3a.	7b. Maia is using the rule 10 (6a ÷ 2).
Toby is using the rule (3a ÷ 2) – 5a.	Isaac is using the rule (10 x 6a) ÷ 2.
Toby says:	Maia says:
Both rules will always give a negative answer.	Both rules will always give the same answer.
Do you agree? Explain your answer.	Do you agree? Explain your answer.
R	R
8a. Use the cards below to create 4 different algebraic expressions for this function machine.	8b. Use the cards below to create 4 different algebraic expressions for this function machine.
50 2.5 x ÷ 5 + 10	8 0.5 x ÷ 25 - 100
Work out the outputs for each expression.	Work out the outputs for each expression.
What is the greatest output you can make?	What is the greatest output you can make?
PS	PS
9a. True or false?	9b. True or false?
$a^3 - (10a + a)$ is the same as $a^3 - 11a$.	$\left(\frac{1}{2} a \div 100\right) - 35$ will always result in a negative answer.
Explain your answer.	Explain your answer.
R	R
classroomsecrets could	

© Classroom Secrets Limited 2019 Reasoning and Problem Solving – Use An Algebraic Rule – Year 6 Greater Depth

<u>Reasoning and Problem Solving</u> <u>Use An Algebraic Rule</u>

Developing

1a. No. Children can show this to be untrue using any number for both rules.
2a. Various possible answers, for example: x 2 + 10 = 26 x 2 + 3 = 19 x 2 - 10 = 6 Greatest output = 26 x 2 + 10
3a. True. + 10, - 9 is the same as + 1. Children can show different examples of inputs to prove their statement.

Expected

4a. No. Children can show this to be untrue using any number for both rules. 5a. Various possible answers, for example: $x 7 \div 2 = 21$ $\div 2 + 4 = 7$ $\div 2 \times 7 = 21$ $+ 2 \times 7 = 56$ Greatest output = 70 $+ 4 \times 7$ 6a. True. + 4, - 9 is the same as +5. Children can show different examples of inputs to prove their statement.

Greater Depth

CLASSROOM Secrets © Classroom Secrets Limited 2019

7a. Yes. Children can show this to be true using any number for both rules.
8a. Various possible answers, for example:
50 ÷ 10 x 5 = 25
50 x 10 + 5 = 505
50 + 10 - 2.5 = 57.5
10 x 50 + 5 = 505
Greatest output = 505
9a. True. Children to show that both expressions result in the same answer.

<u>Reasoning and Problem Solving</u> <u>Use An Algebraic Rule</u>

Developing

1b. Yes. Children can show this to be true by substituting a for 10.
2b. Various possible answers, for example: x 2 + 25 = 45
x 2 + 18 = 38
x 2 - 9 = 11
Greatest output = 45
x 2 + 25
3b. False. + 20, - 18 is the same as +2, not -2. Children can show different examples of inputs to prove their statement.

Expected

4b. Yes. Children can show this to be true using any number for both rules.
5b. Various possible answers, for example: x 10 + 9 = 109
10 + 1 = 1
10 x 1 = 20
1 x 9 = 99
Greatest output = 190
+ 9 x 10
6b. True. + 10, - 5 is the same as + 5.
Children can show different examples of inputs to prove their statement.

Greater Depth

7b. Yes. Children can show this to be true using any number for both rules. 8b. Various possible answers, for example: 8 ÷ 8 x 100 = 100 0.5 x 100 - 25 = 25 25 x 100 - 25 = 2,497.5 8 x 100 - 25 = 775 Greatest output = 2,497.5 9b. False. Children to show a variety of examples to prove their statement.

Reasoning and Problem Solving – Use An Algebraic Rule ANSWERS