Step 3: Use An Algebraic Rule

National Curriculum Objectives:

Mathematics Year 6: (6A2) Use simple formulae

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Explain whether a statement is correct. Using addition, subtraction and multiplication by 2 .
Expected Explain whether a statement is correct. Using all 4 operations.
Greater Depth Explain whether a statement is correct. Using all 4 operations where some answers may be decimals or negative numbers.

Questions 2, 5 and 8 (Problem Solving)
Developing Use the cards to create three different algebraic expressions, where one function is given. Using addition, subtraction and multiplication by 2.
Expected Use the cards to create four different algebraic expressions. Using all 4 operations.
Greater Depth Use the cards to create four different algebraic expressions. Using all 4 operations where some numbers may be decimals or negative numbers.

Questions 3, 6 and 9 (Reasoning)
Developing Explain whether a statement is true or false. Using addition, subtraction and multiplication by 2 .
Expected Explain whether a statement is true or false. Using all 4 operations.
Greater Depth Explain whether a statement is true or false. Using all 4 operations where some answers may be decimals or negative numbers.

More Year 6 Algebra resources.

Did you like this resource? Don't forget to review it on our website.
la. Millie is using the rule $2 a+3$.
Harry is using the rule $(a+3) \times 2$.
Harry says:

Both rules will give the same answer.
lb. Amino is using the rule $a-(a-2)$.
Tom is using the rule $(2 a+5)-23$.
Amino says:

Do you agree? Explain your answer.苗
Db. Use the cards below to create 3 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

3b. True or false?

A two step function machine which has +20, -18 as its functions could provide the same output using just one step of $\mathbf{- 2}$.

Explain your answer.

A two step function machine which has $+10,-9$ as its functions could provide the same output using one

Do you agree? Explain your answer.

2a. Use the cards below to create 3 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

Ba. True or false?
-
,
classroomsecrets.co.uk
© Classroom Secrets Limited 2019
$4 a$. Hafsa is using the rule $3 a+5$. Jake is using the rule $(a+5) \times 3$. Jake says:

Both rules will give the same answer.

4b. Iqra is using the rule $a^{2}-(a \times a)$.
Jake is using the rule $(3 a+5 a) \times 0$. Iqra says:

Both rules will give an answer of zero.

Do you agree? Explain your answer.

5a. Use the cards below to create 4 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

6a. True or false?

A two step function machine which has $+4,-9$ as its functions could provide the same output using just one step.

Explain your answer.

5b. Use the cards below to create 4 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

6b. True or false?

A two step function machine which has $+10,-5$ as its functions could provide the same output using just one step.

Explain your answer.
$7 a$. Jess is using the rule $(5 a \div 2)-3 a$.
Toby is using the rule $(3 a \div 2)-5 a$.
Toby says:

Both rules will always give a negative answer.

7b. Maia is using the rule $10(6 a \div 2)$.
Isaac is using the rule $(10 \times 6 a) \div 2$.
Maia says:

Do you agree? Explain your answer.
Do you agree? Explain your answer.

8a. Use the cards below to create 4 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

9a. True or false?

$$
\begin{gathered}
a^{3}-(10 a+a) \text { is the same as } \\
a^{3}-11 a .
\end{gathered}
$$

Explain your answer.

8b. Use the cards below to create 4 different algebraic expressions for this function machine.

Work out the outputs for each expression.
What is the greatest output you can make?

9b. True or false?
$\left(\frac{1}{2} a \div 100\right)-35$ will always
result in a negative answer.

Explain your answer.

Reasoning and Problem Solving

Use An Algebraic Rule

Reasoning and Problem Solving Use An Algebraic Rule

Developing

1a. No. Children can show this to be untrue using any number for both rules.
2a. Various possible answers, for example:
x $2+10=26$
x $2+3=19$
x $2-10=6$
Greatest output $=26$
x 2 + 10
3a. True. $+10,-9$ is the same as +1 . Children can show different examples of inputs to prove their statement.

Expected

4a. No. Children can show this to be untrue using any number for both rules.
5a. Various possible answers, for example:
$x 7 \div 2=21$
$\div 2+4=7$
$\div 2 \times 7=21$
$+2 \times 7=56$
Greatest output $=70$
$+4 \times 7$
6a. True. $+4,-9$ is the same as +5 .
Children can show different examples of inputs to prove their statement.

Greater Depth

7a. Yes. Children can show this to be true using any number for both rules.
8a. Various possible answers, for example:
$50 \div 10 \times 5=25$
$50 \times 10+5=505$
$50+10-2.5=57.5$
$10 \times 50+5=505$
Greatest output $=505$
9a. True. Children to show that both expressions result in the same answer.

Developing

1b. Yes. Children can show this to be true by substituting a for 10.
2b. Various possible answers, for example:
$x 2+25=45$
$x 2+18=38$
x $2-9=11$
Greatest output $=45$
x $2+25$
3b. False. $+20,-18$ is the same as +2 , not

- 2. Children can show different examples of inputs to prove their statement.

Expected

4b. Yes. Children can show this to be true using any number for both rules.
5b. Various possible answers, for example: x $10+9=109$
$-10+1=1$
$+10 \times 1=20$
$+1 \times 9=99$
Greatest output $=190$
$+9 \times 10$
6b. True. $+10,-5$ is the same as +5 . Children can show different examples of inputs to prove their statement.

Greater Depth

7b. Yes. Children can show this to be true using any number for both rules.
8b. Various possible answers, for example:
$8 \div 8 \times 100=100$
$0.5 \times 100-25=25$
$25 \times 100-2.5=2,497.5$
$8 \times 100-25=775$
Greatest output $=2,497.5$
9b. False. Children to show a variety of examples to prove their statement.

