Year 6 - Spring Block 6 - Ratio - Ratio And Proportion Problems

About This Resource:

This PowerPoint has been designed to support your teaching of this small step. It includes a starter activity and an example of each question from the Varied Fluency and Reasoning and Problem Solving resources also provided in this pack. You can choose to work through all examples provided or a selection of them depending on the needs of your class.

National Curriculum Objectives:

Mathematics Year 6: (6R1) Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
Mathematics Year 6: (6R2) Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360 l and the use of percentages for comparison
Mathematics Year 6: (6R3) Solve problems involving similar shapes where the scale factor is known or can be found
Mathematics Year 6: (6R4) Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

More Year 6 Ratio resources.

Did you like this resource? Don't forget to review it on our website.

Part 1

WALT Solve Ratio And Proportion Problems

(This is the last of our ratio sessions - tomorrow we are moving onto some lessons on statistics.) See my green notes to help you.

How many times smaller is shape A than shape B ?

5cm

25 cm

How many times smaller is shape A than shape B ?

5 times smaller
(we know this because $35 \div 7=5$ and $25 \div 5=5 \sim$ so remember to divide the new length by the old length when solving these problems.)

Varied Fluency 1

Shape A has been enlarged by different scale factors to make shapes B, C and D.

Calculate the missing measurements.

Shape	Length	Width
A	10 cm	12 cm
B		24 cm
C	40 cm	
D		36 cm

Varied Fluency 1

Shape A has been enlarged by different scale factors to make shapes B, C and D.
Calculate the missing measurements.

Shape	Length	Width
A	10 cm	12 cm
B	$20 \mathrm{~cm}^{*}$	$24 \mathrm{~cm}^{*}$
C	$40 \mathrm{~cm}^{* *}$	$48 \mathrm{~cm}^{* *}$
D	$30 \mathrm{~cm}^{* * *}$	$36 \mathrm{~cm}^{* * *}$

*24cm is double 12 cm , so Shape B has been enlarged by a scale factor of 2 , so double the length (10 cm) to het the new length: 20 cm .
** 40 cm is 4 times the size of 10 cm , so C uses a scale factor of 4 . Multiply 12 by 4 to get the new width: $12 \mathrm{~cm} \times 4 \mathrm{~cm}=48 \mathrm{~cm}$.
${ }^{* * *} 36 \mathrm{~cm}$ is three times as large as 12 cm , so a scale factor of 3 has been used. Times 10 cm by 3 to make shape D's length of 30 cm .

Varied Fluency 2

True or false?

I need $\mathbf{2 0 g}$ of flour for every $\mathbf{1 5 g}$ of sugar.

If I have $\mathbf{1 7 5 \mathrm { g }}$ of ingredients, I will have $\mathbf{8 0 \mathrm { g }}$ of flour.

Varied Fluency 2

True or false?

I need $\mathbf{2 0} \mathbf{g}^{*}$ of flour for every $\mathbf{1 5}$ g* of sugar.

If I have $1 \mathbf{7 5} \mathrm{~g}^{* *}$ of ingredients, I will have $\mathbf{8 0 g}$ of flour.

False. There will be 100 g of flour.***
*A quick way to do this is to add up 20 g of flour and 15 g of sugar ~ which makes 35 g .
**Now see how many times this total goes into the grand total of ingredients (175 g). $175 \div 35=5$.
***So, there are 5 lots of 20 g of flour and 5 lots of 15 g of sugar in the recipe:
5 X 20 g of flour $=100 \mathrm{~g}(\mathrm{not} 80 \mathrm{~g})$

Varied Fluency 3

The ratio of strawberries to grapes is 7:3.

Harrison has 30 pieces of fruit in total.

Calculate the number of strawberries and grapes.

The ratio of strawberries to grapes is 7:3.

Harrison has 30 pieces of fruit in total.

Calculate the number of strawberries and grapes.

21 strawberries, 9 grapes.
I can prove this by knowing that 7 strawberries and 3 grapes is 10 . If Therefore, to calculate amounts for 30 pieces of fruit, I have to multiply my original numbers by 3.

Varied Fluency 4

Will is buying some paint.

The ratio of white to blue to green paint is 10:30:90.

If he buys 120 litres of blue paint, how much white and green paint will he need?

Varied Fluency 4

Will is buying some paint.

The ratio of white to blue to green paint is 10:30:90.

If he buys 120 litres of blue paint, how much white and green paint will he need?

40 litres of white paint; 360 litres of green paint. Because 120 litres of blue is 4×30, so multiply the other amounts by 4 too.

Well done! It's over to you now.

Go to Part 2 and choose your challenge! Normal rules apply: page 1 will give you an easier challenge, page 2 will be about the same as what we've just practised and page 3 will be more of a stretch.

You only need to do the first four questions on your chosen challenge - the ones on the left-hand side. If you want extra practice, you can then do the four questions on the right hand side of your chosen challenge page. When you finish, don't forget to mark your answers before sharing, so I can see where you need help.

