1) Draw the following and then ask your learning partner to check your measuring is accurate.
a) An angle measuring 65° with one line measuring 6.5 cm
b) An obtuse angle measuring 136° with one line measuring 5.4 cm
a)

)
6.5 cm

b)
5.4 cm
2) The players are passing the ball to each other. Draw the path the football takes by following the instructions, then measure the angles created.
a) Raheem to Gary to Dele 95°
b) Dele to Jesse to Kyle 65°
c) Gary to Dele to Raheem 42°
d) Kyle to Raheem to Jesse 56°

3) Can you identify where the other players are on the diagram of the pitch? Jordan is facing north. Mark on the pitch where the other players are in relation to Jordan.
a) Eric is 63° clockwise and 4.2 cm away.
b) Marcus is 172° anticlockwise and 5.3 cm away.
c) Jamie is 285° clockwise and 3.7 cm away.
d) Trent is 313° anticlockwise and 1.9 cm away.

4) Draw these shapes in your book, then ask your learning partner to check your measuring is accurate.
a) A quadrilateral with one angle measuring 90°, one angle measuring 110° and one of the sides measuring 7.6 cm
b) An isosceles triangle with one angle measuring 55° and one side measuring 6.4 cm
7.6 cm

a)

5) The football players are warming up by passing the ball back and forth.
a) Where the balls cross, what angles are created? What do you notice?

Two acute angles and two obtuse angles are created. Both pairs of opposite angles are equal in size.
b) These players are passing the ball too. What is the same and what is different about the angles created compared to the picture before? Is this always the case? Investigate by drawing your own pair of intersecting lines.
same - opposite angles are equal. The sum of the angles is 360 degrees.
Different - the pairs of angles are a different size.

