Varied Fluency
 Step 12: Square and Cube Numbers

National Curriculum Objectives:

Mathematics Year 5: (5C5d) Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
Mathematics Year 5: (5C8a) Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes

Differentiation:

Developing Questions to support recognising, ordering and calculating square numbers up to 12^{2} and cube numbers up to 5^{3}. All questions to include the index and the corresponding multiplication, i.e. $4^{3}-4 \times 4 \times 4$.
Expected Questions to support recognising, ordering and calculating square numbers up to 12^{2} and cube numbers up to 12^{3}.
Greater Depth Questions to support recognising, ordering and calculating square numbers up to 12^{2} and cube numbers up to 12^{3}. Questions presented using square and cube numbers within a calculation involving all four operations. Also using knowledge of square and cubed numbers to calculate the square and cube root.

More Year 6 Four Operations resources.

Did you like this resource? Don't forget to review it on our website.

classroomsecrets.co.uk

[^0]| 9a. Circle the calculations which are correct. $8^{2} \div 2^{3}=8 \quad 3^{3} \times 10^{2}=270$
 cube root of $512=7$ $5^{3}+50=175 \quad 3^{3}+73=100$ | 9b. Circle the calculations which are correct. $\begin{aligned} & 9^{2} \times 10^{3}=810 \quad 12^{3}-728=10^{3} \\ & \text { cube root of } 1,331=12 \\ & 7^{3}+8^{2}=407 \quad 2^{3} \times 5^{2}=33 \end{aligned}$ |
| :---: | :---: |
| 10a. Complete the calculations. $\begin{array}{r} 7^{2}+6^{3}= \\ 12^{3}-10^{3}= \end{array}$
 square root of $121=$ | 10b. Complete the calculations. $\begin{array}{r} 4^{3} \times 2= \\ 12^{3}+272= \end{array}$
 square root of 144 = |
| 11a. Calculate then order from smallest to largest. $\begin{array}{cr} 10^{3}+12^{3} & 8^{2}+4^{3} \\ 11^{2}-\text { cube root of } 729 \\ 3^{2} \times 2^{3} & 6^{3} \div 2 \end{array}$ | 11b. Calculate then order from largest to smallest. $\begin{array}{lr} 5^{3}+4^{2} & 8^{3}-3^{2} \\ & 10^{3} \times \text { cube root of } 729 \\ 4^{3} \div 2^{3} & 6^{3}+34 \end{array}$ |
| 12a. Find the pattern. What is the missing number in the sequence?
 square root of 144
 square root of 100
 square root of 64 \square | 12b. Find the pattern. What is the missing number in the sequence?
 cube root of 8
 cube root of 64
 cube root of 216 \square |

classroomsecrets.co.uk

Varied Fluency
 Square and Cube Numbers

Varied Fluency
 Square and Cube Numbers

Developing

1a. Circle $-11 \times 11=121,2 \times 2=4$;
Underline $-4 \times 4 \times 4=64,5 \times 5 \times 5=125$
2a. 49, 27, 100
3a. $2^{3}=2 \times 2 \times 2=8,6^{2}=6 \times 6=36,9^{2}=9$
x $9=81,12^{2}=12 \times 12=144$
4a. $4^{3}=4 \times 4 \times 4=64$

Expected

5a. Circle - 16, 121, 81, 100; Underline - 8, 512, 27, 1,000
6a. 64, 216, 144
$7 \mathrm{a} .3^{3}=27,6^{2}=36,7^{2}=49,5^{3}=125$,
$11^{3}=1,331$
8a. 216, 64

Greater Depth

9 a. $8^{2} \div 2^{3}=8,3^{3} \times 10^{2}=270,5^{3}+50=175$, $3^{3}+73=100$
10a. 265, 728, 11
11a. $3^{2} \times 2^{3}=72,6^{3} \div 2=108,11^{2}-$ cube root of $729=112,8^{2}+4^{3}=128,10^{3}+12^{3}=$ 2,728
12a. square root of 36

Developing

1b. Circle $-10 \times 10=100,8 \times 8=64$;
Underline $-3 \times 3 \times 3=27,2 \times 2 \times 2=8$
2b. 81, 125, 144
3b. $11^{2}=11 \times 11=121,4^{3}=4 \times 4 \times 4=64$,
$7^{2}=7 \times 7=49,3^{2}=3 \times 3=9$
4b. $8^{2}=8 \times 8=64$

Expected

5b. Circle - 49, 144, 4, 25; Underline - 125, 1,331, 729, 216
6b. $64,121,125$
7b. $12^{3}=1,728,8^{3}=512,7^{3}=343,9^{2}=81$,
$4^{2}=16$
8b. 100, 144

Greater Depth

9b. $12^{3}-728=10^{3}, 7^{3}+8^{2}=407$,
$2^{3} \times 5^{2}=33$
10b. 128, 2,000, 12
11b. $10^{3} x$ cube root of $729=9,000$,
$8^{3}-3^{2}=503,6^{3}+34=250,5^{3}+4^{2}=141$,
$4^{3} \div 2^{3}=8$
12b. cube root of 512

[^0]: CL,ASSROOM
 © Classroom Secrets Limited 2018

