WALT round numbers to one million.

Complete as much as you can, stopping if it gets too tricky for you.
1)

1) Complete the table:

	Round to the Nearest 10	Round to the Nearest 100	Round to the Nearest 1000	Round to the Nearest 10000	Round to the Nearest 100000
522254					
412985					
675348					

2) Complete the sentences:
a) To round to the nearest 100, you need to look at the \qquad digit.
b) To round to the nearest 100 000, you need to look at the \qquad digit.
c) To round to the nearest \qquad you need to look at the thousands digit.
3) What could the

Original Number	Rounded to the Nearest $100 \mathbf{0 0 0}$
	400000
	800000
	200000

2)
3) Packets of biscuits are transported around the country in lorries. Each lorry can carry 100000 packets
 of biscuits. 323892 packets of biscuits are ready to be transported.

Sylvain rounds the number of packets of biscuits to the nearest 100000 and says that 3 lorries will be needed. Terry says they will need 4.

Who do you agree with and why?

1) Gertrude has some digit cards. Using all of the digit cards only once,

she says that she can make two numbers that, when rounded to the nearest 100000 , are the same number. What could these numbers be? Can you find three different pairs of numbers?
2) Gertrude makes three different four-digit numbers using the digit cards above. Can you work out what the numbers, A, B and C , are from the clues? When A and B are rounded to the nearest 1000, the difference is 2000.
When B and C are rounded to the nearest 100, the difference is 800 .
What could the numbers be?

Hint: try using the same thousands digit for B and C.

